
Module 4

Customising – defining
commands, LATEX packages

In this final module we will look at ways of customising the overall feel of a document, in-
cluding defining your own commands, loading extra packages, trying different document
classes, and fine-tuning the page layout.

There are a handful of exercises in the sequel, and I encourage you to try them
yourself before looking at the solutions. Any of the article, book or report document
classes should give the required output.

First we will look at ways of managing large amounts of source code.

Splitting the input file

When writing a large document, such as a thesis, it quickly becomes inconvenient to
write everything in the one source file. Instead it is often a good idea to split the input
over several files, say one per chapter.

The \input and \include commands both take a filename as their one mandatory
argument — it is assumed to be a .tex file if no extension is explicitly specified. When
LATEX reaches the \input or \include command in your source code, it simply reads in
the required file at that point, as if its content had been cut-and-pasted there. For this
reason your external chapter files etc. should not contain a \documentclass command
or a document environment.

These commands are very useful if you have defined a number of commands, in
the file definition.tex say, and want to use them for a number of different docu-
ments. If your titlepage, abstract, chapters, appendices and bibliography were contained
in the files titlepage.tex, abstract.tex, introduction.tex, preliminaries.tex,
results.tex, appendix.tex and references.tex, then your master file might look
something like:

c© 2004 Chris Wetherell/GILP, http://wwwmaths.anu.edu.au/~chrisw/LaTeX/

4·1

4·2 Module 4: Customising

\documentclass{book}
\include{definitions}

\begin{document}
\include{titlepage}
\include{abstract}
\tableofcontents
\include{introduction}
\include{preliminaries}
\include{results}
\include{appendix}
\include{references}

\end{document}

You would only ever run LATEX on this file, master.tex say, but never on the external
files titlepage.tex etc.

There are a couple of subtle differences between \input and \include. The \input
command simply treats master.tex as one long document and creates only one auxiliary
file master.aux to keep track of numbering and cross-referencing.

On the other hand, with \include each external file gets its own .aux file which
deals with the numbering and cross-referencing just for that file. The advantage of this
approach is the additional command \includeonly, usually used in the preamble. This
takes a comma separated list of filenames as an argument, and this specifies which of
the \include’d files in the document body will actually appear in the output. However,
if a previous run created an .aux file for an \include’d file, then all subsequent page
numbering and cross-references to it will be formatted correctly even if it doesn’t appear
in the output. Thus you can work on one chapter at a time, say the appendix, and have
it appear in the shortened output file exactly as it would in the full output:

\documentclass{book}
\include{definitions}
\includeonly{appendix}

\begin{document}
\include{titlepage}
\include{abstract}
\tableofcontents
\include{introduction}
\include{preliminaries}
\include{results}
\include{appendix}
\include{references}

\end{document}

Module 4: Customising 4·3

Defining new commands

One of the most powerful aspects of LATEX is the ease with which you can define and
use your own commands, whether they be simple shortcuts to frequently used words or
symbols, or more complicated structures with mandatory and optional arguments.

The advantage of defining your own commands is twofold. Firstly a lot of typing can
be avoided if commonly used passages of text are replaced by a single short command.
Secondly, and perhaps more importantly, if you change your mind about the way in
which this text should be formatted, you need only change the definition once and every
occurrence of it in the output will follow suit.

The \newcommand command takes two mandatory arguments: the first is the name
of your new command, which must begin with a \ character (note that capitalisation
matters); the second is its definition, which may include (almost) any LATEX source code
you like.

In this simplest form, \newcommand simply creates a shortcut for the code in your
definition:

\newcommand{\name}{definition}

For example, if you often found yourself typing “without loss of generality” you might
define

\newcommand{\wlog}{without loss of generality}

and then use \wlog instead. If you wanted a quicker way to use the equation environ-
ment you could make the definitions

\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}

and then simply write \be a=b \ee, much like \[a=b \] or $$ a=b $$.

Exercise 4.1. Use \newcommand to type the following sentence:

I say, I say, I say. . . might I say that I say “I say” quite a lot? I say.

If a new command is to be used throughout the whole document, it’s best to put
its definition in the preamble. However, a \newcommand may appear at any point in
the document body, but the definition will only take effect from that point on. It
is sometimes useful to restrict the scope of \newcommand, much like you would with
a declaration, if you only want a command to be valid for a certain portion of the
document.

LATEX will produce an error if you have tried to define a new command with the
same name as an existing command. For example

\newcommand{\begin}{Once upon a time}

4·4 Module 4: Customising

produces

LaTeX Error: Command \begin already defined.
Or name \end... illegal, see p.192 of the manual.

See the LaTeX manual or LaTeX Companion for explanation. Type H
<return> for immediate help.
...

l.86 \newcommand{\begin}{Once upon a time}

?

Here you have two choices: choose a different name for your command, or if you’re
absolutely sure it’s safe use the \renewcommand command, which has precisely the same
syntax as \newcommand. (By the same token, if you try to use \renewcommand to define
something which didn’t exist already, LATEX will produce an error.)

If you don’t know what a LATEX command does, its best not to redefine it — it’s
quite possible that other LATEX commands need to refer to it and would then not work
properly. On the other hand, sometimes it is necessary to redefine an existing command
to get the desired effect — in Module 3 we saw how to change the way numbers appear
in the output by redefining \thectr commands with \renewcommand.

The declaration-like scope of command definitions is particularly useful in this con-
text: a command will revert back to its original definition if used outside the scope of
\renewcommand.

Occasionally there will be situations where you will not be able to, or even want
to, find out whether a command name exists already. For this reason there is a third
variation \providecommand. If the proposed command name does not exist already
then it is defined as in \newcommand, otherwise the proposed definition is ignored and
the existing command remains intact.

To define a command with n mandatory arguments use \newcommand, \renewcommand
or \providecommand with the optional argument n between the name argument and def-
inition argument:

\newcommand{\name}[n]{definition}

To substitute the arguments into definition use the symbols #1 for the first, #2 for the
second, etc:

\newcommand{\like}[2]{#1 is to #2}

\like{Man}{boy} as
\like{woman}{girl}.\\

\like{Cold}{winter} as
\like{hot}{summer}.

Man is to boy as woman is to girl.
Cold is to winter as hot is to summer.

Module 4: Customising 4·5

A #. . . argument can appear any number of times in the definition, even none. A nice
example which you might find handy is the following:

\newcommand{\ignore}[1]{}

This takes one mandatory argument but produces no output — in effect the argument
is ignored. Thus if you needed to temporarily “comment out” a tract of source code you
may simply surround it by \ignore{ and }, instead of inserting a % at the beginning of
each line.

Exercise 4.2. Define a chemical element command with three arguments to typeset
the following displayed formula (recall: $$ begins and ends a displayed formula; use _
for subscripts and ^ for superscripts; use \mbox for plain text in maths-mode; \to is a
shortcut for \rightarrow).

N15
7 + H1

1 → C12
6 + He4

2

Exercise 4.3. Define a command with two arguments and a \sum command to typeset
the following displayed formula (recall: ∞ is \infty).

∞∑
i=1

ai =
∞∑

j=1

bj =
∞∑

k=1

ck =
∞∑
l=1

dl =
∞∑

m=1

em =
∞∑

n=1

fn

A second optional argument opt to \newcommand allows you to specify that #1 is an
optional argument for your new command:

\newcommand{\name}[n][opt]{definition}

Here opt is the default value of #1 when the optional argument is not given to \name
— often it will be empty:

\newcommand{\hi}[2][]{‘‘Hello#1, #2!’’}
\hi{John}\\
\hi[there]{Jenny}

\newcommand{\Sum}[2][i]
{\sum_{#1=1}^{\infty}#2_{#1}}

$$
\Sum{a}=\Sum{b}=\Sum[j]{c}
$$

“Hello, John!”
“Hello there, Jenny!”

∞∑
i=1

ai =
∞∑
i=1

bi =
∞∑

j=1

cj

Exercise 4.4. Define a new command with one optional argument to typeset the fol-
lowing:

Hydrofluorocarbons that begin a sentence start with H, but most hydroflu-
orocarbons, like these hydrofluorocarbons, don’t.

4·6 Module 4: Customising

Defining new environments

New environments can be defined with \newenvironment, or when necessary with
\renewenvironment. Both commands take three mandatory arguments: the first is
the name of the new environment, name say (note that it doesn’t begin with \); the
second is the source code to be produced by the \begin{name} command; the third is
the code produced by the \end{name} command. Like \newcommand, these commands
also take up to two optional arguments: the first is the number n of arguments for the
name environment; the second opt signifies that #1 is optional and has default value opt
if not otherwise specified:

\newenvironment{name}[n][opt]{begincode}{endcode}

Note that the arguments #1, #2 etc. can only be used in the begincode part of the
definition.

For example, if every table in your document is centered on the page and most
of them have three right-justified columns with vertical lines, you might define a new
environment as follows:

\newenvironment{mytable}[1][|r|r|r|]
{ \begin{table}[ht!] \centering \begin{tabular}{#1} }
{ \end{tabular} \end{table} }

Then it is simply a matter of entering the table entries between \begin{mytable} and
\end{mytable}, and possibly overriding the layout argument for exceptional tables:

\begin{mytable}
\hline 1 & 2 & 3 \\
\hline 40 & 50 & 60 \\
\hline
\end{mytable}

\begin{mytable}[c||c]
12 & 431 \\
0 & 0
\end{mytable}

1 2 3
40 50 60

12 431
0 0

The \newtheorem command is another powerful tool for defining new environments.
It is designed specifically for creating theorem-like environments: theorems, lemmas,
corollaries, conjectures and so on. When such an environment is invoked, LATEX prints
a boldface label and number, such as Theorem 1., and then typesets in italics the text
which follows.

The \newtheorem command takes two mandatory arguments: the first is the name
of the environment, and the second is the text of the label:

Module 4: Customising 4·7

\newtheorem{thm}{Theorem}

\begin{thm}
This is an exciting theorem.
\end{thm}

Theorem 1. This is an exciting
theorem.

LATEX automatically assigns a counter and a number printing command, in this case thm
and \thethm respectively.

As usual these environments can be cross-referenced with \label and \ref com-
mands, and their counters and number printing commands can be fully customised with
\setcounter and \renewcommand.

Exercise 4.5. Use \newtheorem and \renewcommand to typeset the following (refer to
page 3·13 of Module 3):

Conjecture A. Conjectures can be labelled with letters.

Conjecture B. I occasionally state the bleeding obvious.

Two types of optional argument for \newtheorem allow you to specify how the num-
bering is incremented and displayed.

An optional argument secunit placed after the mandatory arguments specifies that
the incrementing should take place within the secunit sectional unit. An optional argu-
ment envname placed between the mandatory arguments specifies that this environment
will share the numbering sequence of the theorem-like environment envname.

Thus in the follwing example thm environments are incremented within chapters,
and displayed accordingly, and cor environments share the same numbering sequence:

\newtheorem{thm}{Theorem}[chapter]
\newtheorem{cor}[thm]{Corollary}

\begin{thm}
This is an exciting theorem.
\end{thm}

\begin{cor}
Theorems can be exciting.
\end{cor}

Theorem 4.1. This is an exciting
theorem.

Corollary 4.2. Theorems can be
exciting.

Later we will see ways of typesetting proofs and definitions.

Boxes

A box is essentially a piece of output which LATEX treats as a unit, as if it were a single
character. We’ve already come across a handful of examples: the tabular and array
environments create boxes which are generally quite large; \mbox creates a box which

4·8 Module 4: Customising

just contains the text of its argument. Note that boxes are never broken over a page.

The \fbox command is similar to \mbox, but here a frame is put around the box
containing the argument:

I highlight \fbox{this phrase}
with a framed box because I
misplaced my red pen.

I highlight this phrase with a
framed box because I misplaced my
red pen.

Actually, \mbox and \fbox are just special cases of the more powerful commands
\makebox and \framebox. Each takes one mandatory argument which is the text to be
put inside the box. There is also an optional argument which specifies the width of the
box. If none is given then the default value is just the width of the argument text, so
this is then equivalent to \mbox or \fbox respectively. If the first optional argument is
given then by default the text is centered within the box. This can be overridden with
a second optional argument, one of l or r which then left- or right-justifies the text:

ho \makebox[2cm]{ho} ho\\
ho \makebox[2cm][l]{ho} ho\\
ho \makebox[2cm][r]{ho} ho\\

\framebox[3cm][r]{indeed}

ho ho ho
ho ho ho
ho ho ho

indeed

Note that the mandatory text argument for a \makebox or \framebox cannot contain
linebreaks, and the output they create is never broken over a line.

On the other hand, the \parbox command creates a box whose argument can be
broken over several lines. It takes two mandatory arguments: the first is the width of
the box and the second is the text itself. An optional argument, one of t or b, tells
LATEX whether to align the top or bottom of the box with the output line in which it
appears; the default is to align the middle of the box:

A \parbox{2em}{B C D E F G H I}
\parbox[t]{2em}{J K L M N O P Q}
\parbox[b]{2em}{R S T U V W X Y} Z

A

B C
D E
F G
H I

J K
L M
N O
P Q

R S
T U
V W
X Y Z

For larger tracts of text there is the related minipage environment. It also takes
one mandatory argument which is the width of the box to be created, and one optional
t or b argument which specifies vertical alignment. All of the examples in these notes,
where source code and output appear side by side such as the \parbox example above,
were created with a pair of minipage environments.

Exercise 4.6. Use the \texttt command and a minipage environment, with width
10em, to typeset the following:

Module 4: Customising 4·9

This minipage is
created with the
minipage environ-
ment.

Note that a \footnote command inside a minipage environment creates a footnote
at the bottom of the minipage, and the mpfootnote counter is used to handle the num-
bering.

Text can be raised or lowered with the \raisebox command. It takes two mandatory
arguments: the second is the text, and the first is the amount by which it should be
raised — this may be negative to lower the text instead:

\raisebox{-0.8em}{s}\raisebox{-0.6em}{t}%
\raisebox{-0.4em}{a}\raisebox{-0.2em}{i}%
r\raisebox{0.2em}{c}\raisebox{0.4em}{a}%
\raisebox{0.6em}{s}\raisebox{0.8em}{e}

stairca
se

(Note the use of % to avoid inserting extra space at the end of an input line.)

Exercise 4.7. Use \raisebox and the ex unit of measurement to typeset the following:

xxxxx

The \raisebox command also takes two optional arguments which, for the purposes
of line spacing, tell LATEX to pretend that the box has a specified height and depth:

\raisebox{-0.5cm}[1.5cm][1cm]{ahoy there}

tells LATEX to lower “ahoy there” by 0.5cm, and also pretend that it actually stretches
1.5cm above the line and 1cm below.

Packages

A lot of extra functionality is available in LATEX by loading additional packages with
the \usepackage command. This takes the name of a package (.sty file) as its one
mandatory argument, or a comma separated list of package names. There are dozens
and dozens of packages, but we’ll briefly describe only a few of them here.

latexsym, amssymb, amstex and amsthm

These packages provide a vast array of additional mathematical tools and symbols. See
Chapter 8 of The LATEX Companion for a detailed account.

In particular the amsthm package provides a proof environment which begins a new
paragraph with “Proof.”, unless this is overridden by an optional argument, and ends
the last paragraph with a 2 symbol:

4·10 Module 4: Customising

\begin{proof}
Firstly \[a=b \] so it follows
that $b=a$.
\end{proof}

\begin{proof}[Alternative proof.]
Obvious.
\end{proof}

Proof. Firstly

a = b

so it follows that b = a.

Alternative proof. Obvious.

The amsthm package also allows you to define theorem-like environments which are
not typeset in italics, such as you might use for a definition or example. The declaration
\theoremstyle{definition} tells LATEX that any \newtheorem which follows should
be typeset in this way:

\newtheorem{thm}{Theorem}[chapter]
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}

\begin{defn}
A \emph{group} is a set with a
nice rule for multiplication.
\end{defn}

\begin{thm}
Groups are very interesting.
\end{thm}

Definition 4.1. A group is a set
with a nice rule for multiplication.

Theorem 4.2. Groups are very in-
teresting.

color

The color package allows you to change the colour of text in the output. Note that
some DVI viewers may not be able to handle this and will instead show plain black text.
In this case you can convert to PDF and then view with Acrobat Reader to see exactly
what’s going on.

There are a number of predefined colours in the color package: black, white, red,
green, blue, yellow, cyan and magenta. It is also possible to define your own with the
\definecolor command. This command takes three mandatory arguments: the first is
a name you choose for the colour, and the second is one of gray, rgb or cmyk.

If the second argument is gray, then the third is one number between 0 (black) and
1 (white) which specifies the shade of grey.

If the second argument is rgb, then the third is a list of three numbers between 0
and 1 which specify respectively the amounts of red, green and blue light required to
produce the colour.

If the second argument is cmyk, then the third is a list of four numbers between 0
and 1 which specify respectively the amounts of cyan, magenta, yellow and black in the
colour.

Module 4: Customising 4·11

\definecolor{midgrey}{gray}{0.5}
\definecolor{purple}{rgb}{0.5,0,1}
\definecolor{orange}{cmyk}{0,0.7,1,0}

These definitions would most likely appear in the preamble.
Once your colours have been defined, if necessary, it is simply a matter of using

either the \textcolor command or \color declaration. The first takes two arguments,
the name of the colour and the text to be coloured; the second takes just the name of
the colour as an argument and then affects all of the text in its scope:

As you can plainly see:
{\color{red} this is red,}
\textcolor{purple}{this is
purple,} \textcolor{orange}
{and this is orange.}

As you can plainly see: this is red,
this is purple, and this is orange.

graphics

We have already used the graphics package to include graphics with the aptly named
\includegraphics. There are a number of other commands that are available which
allow you to scale, resize, rotate and reflect parts of the output in your document. Again
most DVI viewers cannot handle this, so look at the PDF version instead.

The \scalebox command takes two mandatory arguments: the second is the text to
be scaled, and the first is the factor by which it should be scaled. Thus any font size can
be achieved in LATEX, in addition to those specified by the standard sizing declarations
such as \small and \Large (see Table 1.9).

By default the text is scaled by the same factor horizontally and vertically, but the
vertical factor can be specified separately with an optional argument:

\scalebox{5}{Big}\\

\scalebox{3}[1]{stretched}
Big
stretched

The \resizebox command has essentially the same effect as \scalebox, but here
you specify the absolute dimensions of the text, in terms of the units of your choice. It
takes three arguments: the first and second are respectively the horizontal and vertical
dimensions, and the third is the text itself. The aspect ratio can be automatically
maintained by replacing either of the first two arguments with a ! character:

\resizebox{3cm}{1cm}{3cm by 1cm size}\\

\resizebox{10pc}{!}{10pc wide,
and aspect ratio maintained}

3cm by 1cm size
10pc wide, and aspect ratio maintained

4·12 Module 4: Customising

The \rotatebox command takes two mandatory arguments: the second is the text
to be rotated, and the first is the angle measured in degrees anti-clockwise:

This sentence seems
\rotatebox{10}{a bit bent.}

\rotatebox{180}{This
one’s upside down!}

This sentence seems a bit bent.

Thisone’supsidedown!

The \reflectbox command takes just one argument, the text to be reflected:

\reflectbox{Reflections aren’t
easily read.}

Reflectionsaren’teasilyread.

All of the above commands can be used in combination with each other, and with
the \raisebox, \framebox and \textcolor commands we saw earlier, to achieve quite
complex output.

Exercise 4.8. With \usepackage{graphics} in the preamble, typeset the following:

J
Note that all of these graphics commands create a box much like \mbox would, and

therefore cannot contain text which is broken over a line. To apply the transformations
to a larger object, such as a whole paragraph, simply place it within a \parbox first.

Exercise 4.9. Use \rotatebox, a \parbox of width 16ex and the tabular environment
to typeset the following:

It
em

P
ri

ce
E

gg
s

30
c

ea
T
ea

?

Other document classes

To date we have dealt almost entirely with the book and article document classes,
although we have briefly touched on the report class also. There are many other
document classes (.cls files) which can be invoked with the \documentclass command.
We’ll look at the remaining two standard classes here, namely letter and slides.

Module 4: Customising 4·13

letter

The letter document class can be used to produce any number of letters from the
one source file. Usually you begin by defining the sender’s name and address in the
preamble with the \signature and \address commands respectively. They both take
one argument, which can contain \\ commands to start new lines if necessary.

Each letter is then written within a letter environment. This takes one mandatory
argument which is the name and address of the recipient (again including \\’s as nec-
essary). Inside the environment you begin with the \opening command; it takes one
argument such as “Dear Sir,” or “To whom it may concern,” — you are responsible for
punctuation here.

After this point you proceed with the content of your letter, and then finish with
the \closing command with one argument, such as “Yours sincerely,” and so on. An
example follows:

\documentclass{letter}
\address{MSI, ANU\\ ACT 0200}
\signature{Chris Wetherell}

\begin{document}

\begin{letter}{The Convenor\\
Information Literacy Program\\
The Libraries, ANU\\ ACT 0200}

\opening{Dear Sir/Madam,}

I regret to inform you that the
\LaTeX\ course has not been well
received.

\closing{Yours sincerely,}

\cc{Goossens, Lamport}
\encl{Letter of resignation}

\end{letter}

\end{document}

MSI, ANU
ACT 0200

16 April, 2003

The Convenor
Information Literacy Program
The Libraries, ANU
ACT 0200

Dear Sir/Madam,

I regret to inform you that the LATEX
course has not been well received.

Yours sincerely,

Chris Wetherell

cc: Goossens, Lamport

encl: Letter of resignation

LATEX formats the positioning of the following for you:

• the sender’s return address, as provided with the \address command;

• today’s date underneath the return address — for a different date, redefine the
\today command: eg \renewcommand{\today}{17 March, 1975} ;

• the recipient’s address, as provided as the argument to the letter environment;

4·14 Module 4: Customising

• the closing and sender’s name, as provided by \closing and \signature respec-
tively.

If, for a particular letter, you need to specify a sender’s name or address which is different
from the default values set in the preamble, you can override them with a \signature
or \address command between \begin{letter}{. . . } and \opening{. . . }.

There are three additional commands which produce output below the closing of a
letter, namely \cc, \encl and \ps. They each take one argument, and are used for a
“courtesy copy” list, list of enclosed items, and post-script respectivley.

The letter document class is particularly useful if you wish to send multiple copies of
the same letter to different recipients. Simply write the content of the letter (including
\opening, \closing etc.) in a separate file, and then use the \input or \include
command to insert it into a separate letter environment for each recipient.

Exercise 4.10. Define a command which takes two arguments (a recipient’s details,
and the name of a letter file) and produces a letter environment with the letter file
inserted, as described above.

slides

LATEX freely admits to not being terribly good at visual formatting, but there are a
couple of reasons you might want to use it to produce slides: your slides might be based
on an existing LATEX document, or they may contain a lot of complicated mathematics.

The slides document class differs from other classes in a number of important
respects:

• the default font size is much larger, so it can be read from a distance;

• the normal roman family is very similar to sans serif, but only the roman and
typewriter families are actually available;

• only the upright and italics font shapes are available;

• page breaking commands are (usually) not allowed;

• there are no floating objects, ie no table or figure environments.

There are three environments provided by the slides document class: slide,
overlay and note.

The slides themselves are produced inside a slide environment, one for each slide,
and these are numbered 1, 2, 3 etc. If the content does not fit on a single page then
LATEX will give a warning, and the excess pages will not be numbered.

The overlay environment is used to create a slide which will be placed on top of
a previous one. The difference here is that any overlay environments between, say,

Module 4: Customising 4·15

the fourth and fifth slide environment will produce slides numbered 4-a, 4-b, 4-c etc.
(A nice way of ensuring that everything lines up correctly in a slide with overlays is to
create many copies of the overall effect first, and then “white out” the required regions
in each slide with the color package and \textcolor{white}{. . . } command.)

The notes environment is used to make accompanying notes for the speaker. Any
such notes between the fourth and fifth slide will be numbered 4-1, 4-2, etc. You would
normally print these notes on plain paper.

The \onlyslides command takes one argument, which is a comma separated list
of slide numbers or ranges of numbers, and the effect is to produce in the output only
those listed slides and any associated overlays. Similarly, the \onlynotes command
sees that only those notes associated with listed slide numbers are produced. These can
be very useful for printing: first use \onlyslides{1-999} to produce only the slides
and overlays for printing on overhead transparencies, and then \onlynotes{1-999} to
produce all of the notes to be printed on plain paper.

Document class options

There are a number of optional arguments for the \documentclass command which
influence the look of the output, for example

\documentclass[12pt,draft,a4paper,landscape]{article}

The following is a list of the options available for the five standard document classes,
book, report, article, letter and slides. Where there is more than one listed, the
first one is the default unless stated otherwise.

10pt, 11pt, 12pt : Specify the size of normal type. Not available for slides.

oneside, twoside : Format the document for one- or two-sided printing. Two-sided
output has reflected margins and page numbers. The default for book is twoside.
Not available for slides.

onecolumn, twocolumn : Produce one or two columns in the output. Not available for
letter or slides.

landscape : Interchange the paper width and height, for printing sideways.

letterpaper, legalpaper, executivepaper, a4paper, a5paper, b5paper : Specify the
paper size. The default for LATEX is letterpaper but, depending on their local
configuration, commands like dvips and dvipdf which produce printable docu-
ments will most likely default to A4.

final, draft : The draft option marks with a black box the location of any output
text which overhangs a margin, as a visual aid for fine-tuning the spacing.

4·16 Module 4: Customising

openright, openany : Specify whether chapters begin on right-hand pages or on any
page. The default for report is openany. Not available for article, letter or
slides.

titlepage, notitlepage : Specify whether titlepages and abstracts appear on a sepa-
rate page. The default for article is notitlepage. Not available for letter.

openbib : Specify that the \newblock command (used by BibTEX) starts a new line in
a bibliographic entry. Not available for letter or slides.

leqno : Number equations on the left.

fleqn : Align displayed formulas on the left.

Customising page layout

The layout of a page is partly determined by the default values of a number of lengths.
Much like \setcounter and \addtocounter, there are commands \setlength and
\addtolength which can be used to set the value of a length. They each take two
arguments: the first is the name of a length; the second is the length to be set. Any of
the usual units mm, cm, in, pt, pc, ex and em can be used in the second argument, but
you can also use the name of another length as a unit! For example

\setlength{\textwidth}{2\parindent}

tells LATEX to set the \textwidth length to double the length of \parindent. You can
even set a length in terms of itself:

\addtolength{\textwidth}{0.5\textwidth}

increases the length of \textwidth by 50%. In a similar vein, any defined length can
be used as a unit in the argument of commands such as \makebox, \parbox etc.

Three additional commands for setting the value of a length are \settowidth,
\settoheight and \settodepth. Here the length is set to, respectively, the width,
height or depth of the second argument:

\settowidth{\textwidth}{This will be quite a narrow page.}

Figure C.3 on page 182 of LATEX: A Document Preparation System gives a very nice
diagram of the standard page layout lengths. The following is a brief summary:

\paperheight and \paperwidth : The dimensions of the piece of paper LATEX is
planning for, usually set by the papersize (eg a4paper or letterpaper)

\textheight and \textwidth : The dimensions of the Body, that is, the rectangle
into which LATEX puts the main text of your document. This is essentially the
usable printable area.

Module 4: Customising 4·17

\topmargin : No, not the distance from the top of the page to the top of the Head.
LATEX actually automatically puts 1 in. of space at the top of the page, and the
top of the Head is \topmargin below this.

\headheight : The height of the Head part of the page. (The width is the same as
\textwidth.)

\headsep : The amount of space LATEX leaves between the bottom of the Head and
the top of the Body.

\footskip : The distance from the bottom of the Body to the bottom of the Foot.

\evensidemargin and \oddsidemargin : Like at the top of the page, LATEX leaves 1
inch of space on the left. The left-hand edge of the Body starts \evensidemargin
or \oddsidemargin from this, depending what page number it is (useful for double-
sided printing, to allow space for binding).

\marginparsep : The space between the right-hand edge of the Body and the left-hand
edge of any Marginal Note.

\marginparwidth : The width of any Marginal Note.

Usually you would override the default values of these lengths, with \setlength etc,
in the preamble.

Another useful length is \arraycolsep which adds space between the columns of a
tabular or array environment. Closely related is the command \arraystretch which
allows you to specify the overall spacing of a table or array. It is not a length; its default
value is 1 and this can be reset with \renewcommand to a factor by which tables and
arrays should be stretched:

\renewcommand{\arraystretch}{2}

The \newlength command allows you to define your own lengths. It takes one
argument, the name of the length which must start with a \ character.

This can be very useful for typesetting similar structures throughout your document.
Perhaps you want all of your important displayed formulas to appear inside a framed
box of width 10cm:

$$ \framebox[10cm]{$a=b$} $$
$$ \framebox[10cm]{$e^{x}\not=1$} $$

If you then came across a formula which was wider than 10cm and you wanted all of
the boxes to be consistent, you would have to change each occurrence by hand. Instead
you could start with this:

\newlength{\eqwidth}
\setlength{\eqwidth}{10cm}
$$ \framebox[\eqwidth]{$a=b$} $$
$$ \framebox[\eqwidth]{$e^{x}\not=1$} $$

4·18 Module 4: Customising

Then when the troublesome wider formula comes along you need only change the length
of \eqwidth once, say with \setlength{\eqwidth}{12cm}, and then every occurrence
of boxed formulas will follow suit.

Customising page style

Recall that the \pagenumbering command specifies how page numbers are to be printed.
Here the argument is one of arabic, roman, Roman, alph or Alph.

Another way of customising the look of your document is with the \pagestyle
command in the preamble. This determines what information goes into the head and
foot of each page. There are four arguments which can be used with \pagestyle:

empty : The head and foot are both empty. LATEX does still assign each page a number,
but it is not printed.

plain : The page number is in the foot and the head is empty. This is the default for
article and report.

headings : The page number and other information (determined by the document
class) is put in the head, and the foot is empty. The “other information” can be
overridden using the \markboth and \markright commands.

myheadings : Like headings, except that you have to specify what the “other informa-
tion” is that goes into the head, using the \markboth and \markright commands.

The \markboth command takes two arguments: what goes in the head of left- and
right-hand pages respectively. The \markright command takes only one argument:
what goes in right-hand pages. Note that in one-sided printing, say in the report doc-
ument class, every page is considered to be a right-hand page.

The style of an individual page can be overridden with the \thispagestyle com-
mand. It only applies to the page in which the command appears, but its syntax is the
same as \pagestyle.

You can also switch between one- and two-column output for an individual page
with the \onecolumn and \twocolumn declarations (compare with the onecolumn and
twocolumn optional arguments for \documentclass). They each start a new page and
affect the format of all subsequent pages within their scope. An optional argument for
\twocolumn will be printed at the top of the page, spanning both columns:

\twocolumn[\Huge\centering \LaTeX\ course almost over]

ANU: Students breathed a sigh of relief today when...

Module 4: Customising 4·19

The list environment

The list environment produces a list, much like enumerate, itemize and description,
but here you have complete control over the spacing and labelling of list items, and which
counter should be used, if any.

If there doesn’t already exist an appropriate counter, you can define one yourself
with the \newcounter command. It takes one mandatory argument, the name of the
counter (which does not start with \):

\newcounter{banana}

Here banana will start with a value of 0. A number printing command is also defined,
in this case \thebanana, and by default this will print in arabic form.

The list environment takes two mandatory argument: the first specifies what label
is to be printed (which may depend on a counter); the second is a list of commands
telling LATEX which counter to use and what lengths to set. The counter is chosen with
the \usecounter command, and the lengths are set with \setlength or \addtolength:

Here’s some text to end the
previous paragraph.

\begin{list}
{\textbf{B--\arabic{banana}:} }
{\usecounter{banana}
\setlength{\itemindent}{.5cm}
\setlength{\leftmargin}{1in}
\setlength{\rightmargin}{\leftmargin}
\setlength{\parsep}{0cm}
\setlength{\itemsep}{0cm} }

\item Bananas are terribly nice to eat.
\item Especially when they come in pears.
\end{list}

Here’s some text to end the previous para-
graph.

B–1: Bananas
are terribly
nice to eat.

B–2: Especially
when they
come in pears.

Figure 6.3 on page 113 of LATEX: A Document Preparation System gives a very nice
diagram of the available list lengths. The following is a brief summary:

\labelsep : The distance from the right edge of the label to the start of the item text.

\labelwidth : The width of the label.

\itemindent : How far the first line of text of each item (not the label) is indented
from the other lines.

\leftmargin, \rightmargin : How far each item is indented from the margins on the
left and right.

\parsep : Vertical distance between paragraphs in an item.

\itemsep : Extra vertical distance between items.

\listparindent : How far the paragraphs of an item are indented.

4·20 Module 4: Customising

Not every length need be defined in the second argument of a list environment;
those which aren’t will take on their default values. There is also no need to use a
counter with \usecounter if the label in the first argument doesn’t depend on it.

Solutions to exercises

These are just some of the possible solutions — you may have come up with something
slightly different which is just as valid. Remember that all multiple spaces are ignored,
but it is sometimes helpful to set out your source code in a logical way.

(4.1) \newcommand{\s}{I say}
\s, \s, \s\ldots\ might \s\ that \s\ ‘‘\s’’ quite a lot? \s.

(4.2) \newcommand{\el}[3]{\mbox{#1}_{#2}^{#3}}
$$\el{N}{15}{7}+\el{H}{1}{1}\to\el{C}{12}{6}+\el{He}{4}{2}$$

(4.3) \newcommand{\Sum}[2]{\sum_{#1=1}^{\infty}#2_{#1}}
$$\Sum{i}{a}=\Sum{j}{b}=\Sum{k}{c}=\Sum{l}{d}=\Sum{m}{e}=\Sum{n}{f}$$

(4.4) \newcommand{\hydro}[1][h]{#1ydrofluorocarbons}
\hydro[H] that begin a sentence start with H, but most \hydro, like
these \hydro, don’t.

(4.5) \newtheorem{cnj}{Conjecture}
\renewcommand{\thecnj}{\Alph{cnj}}

\begin{cnj} Conjectures can be labelled with letters. \end{cnj}
\begin{cnj} I occasionally state the bleeding obvious. \end{cnj}

(4.6) \begin{minipage}{10em}
This minipage is created with the \texttt{minipage} environment.
\end{minipage}

(4.7) \raisebox{1ex}{x}x\raisebox{-1ex}{x}x\raisebox{1ex}{x}

(4.8) \rotatebox{45}{\fbox{\reflectbox{\scalebox{4}{J}}}}

(4.9) \rotatebox{90}{ \parbox{16ex}{
\begin{tabular}{|l|c|}
\hline Item & Price \\
\hline Eggs & 30c ea\\

Tea & ? \\
\hline

\end{tabular} } }

(4.10) \newcommand{\ltr}[2]{\begin{letter}{#1}\include{#2}\end{letter}}

